Prompt Engineering GuideAboutAboutContact ↗Contact ↗ (opens in a new tab)
GitHubGitHub (opens in a new tab)DiscordDiscord (opens in a new tab)
  • Prompt Engineering
  • Introduction
    • LLM Settings
    • Basics of Prompting
    • Prompt Elements
    • General Tips for Designing Prompts
    • Examples of Prompts
  • Techniques
    • Zero-shot Prompting
    • Few-shot Prompting
    • Chain-of-Thought Prompting
    • Self-Consistency
    • Generate Knowledge Prompting
    • Automatic Prompt Engineer
    • Active-Prompt
    • Directional Stimulus Prompting
    • ReAct
    • Multimodal CoT
    • Graph Prompting
  • Applications
    • Program-Aided Language Models
    • Generating Data
  • Models
    • Flan
    • ChatGPT
    • GPT-4
  • Risks & Misuses
    • Adversarial Prompting
    • Factuality
    • Biases
  • Papers
  • Tools
  • Notebooks
  • Datasets
  • Additional Readings
  • Prompt Engineering
  • Introduction
    • LLM Settings
    • Basics of Prompting
    • Prompt Elements
    • General Tips for Designing Prompts
    • Examples of Prompts
  • Techniques
    • Zero-shot Prompting
    • Few-shot Prompting
    • Chain-of-Thought Prompting
    • Self-Consistency
    • Generate Knowledge Prompting
    • Automatic Prompt Engineer
    • Active-Prompt
    • Directional Stimulus Prompting
    • ReAct
    • Multimodal CoT
    • Graph Prompting
  • Applications
    • Program-Aided Language Models
    • Generating Data
  • Models
    • Flan
    • ChatGPT
    • GPT-4
  • Risks & Misuses
    • Adversarial Prompting
    • Factuality
    • Biases
  • Papers
  • Tools
  • Notebooks
  • Datasets
  • Additional Readings
  • About
  • Contact ↗ (opens in a new tab)
Question? Give us feedback → (opens in a new tab)Edit this page
Techniques
Graph Prompting

GraphPrompts

Liu et al., 2023 (opens in a new tab) introduces GraphPrompt, a new prompting framework for graphs to improve performance on downstream tasks.

More coming soon!

Multimodal CoTApplications

Copyright © 2023 DAIR.AI